
MEZMO EBOOK

“Digital Transformation” has been bouncing around as
a buzzword for years. But it was perhaps not until 2020 that

many teams realized the full meaning and urgency of the term.

Log Management
in the Age of Digital

Transformation

www.mezmo.com

“Digital Transformation” has been bouncing around
as a buzzword for years. But it was perhaps not until
2020 that many teams realized the full meaning and
urgency of the term. Faced with unprecedented
demand to deliver high-performing, ultra-reliable
user experiences in a chaotic environment,
organizations over the past year have learned that
they can no longer ignore digital transformation.

In practice, embracing digital transformation
requires a number of changes. Siloed teams must
evolve into DevOps squads. Monoliths need
refactoring into microservices. Release velocity
must change from once a year to once or more a day.

If you follow conversations about DevOps and digital
transformation, you already know these things. You
know that you should be updating your practices and
tools to ensure that your teams have what they
need, when they need it.

But how do you actually do that? How can operations
teams quickly identify and alert developers of
production issues before they become Twitter
hashtags? How can developers use data to assess

how their code changes may impact the larger
pipeline before they ever commit changes? How can
business leaders leverage massive amounts of data
to better understand the health of their organization
as a whole?

For many companies, these are the real questions
that need to be answered in the Age of Digital
Transformation.

INTRODUCTION

Introduction		

Log Management and Digital Transformation 		

The Power of Microservices Logging		
		 Modern Systems = Complex Systems
		 The Power of Logs		

Improving Your Release Cycle with Log Management		 					
		 The DevOps Release Cycle	
		 The Power of Automation
		 Using Logs to Drive Automation

Why DevOps Tools Are Essential For Digital Transformation
		 Why Digital Transformations Succeed and Fail
		 Using DevOps to Drive Digital Transformation
		 Ensuring DevOps Success with the Right Toolset
		 Learning from DevOps Tools

Understanding the Impact Code Changes Have On Your Pipeline
		 The DevOps Lifecycle
		 Planning and Coding
		 Build and Test
		 Release and Deploy
		 Monitor and Operate

Conclusion		

2		

4		

5
5
6		

8		 				
8
9
10

11
11
12
12
12		

13
13
14
15
15
15

17		

TABLE OF CONTENTS

4ME ZMO EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

The solution to these challenges lies, in part, in
effective log management. Although it would,
admittedly, be an overstatement to suggest that log
management alone is the key to successful digital
transformation, leveraging logs effectively is one key
ingredient to ensuring that teams can move quickly, fail
forward and keep their end-users continually delighted
in an age of rapid change.

To prove the point, this eBook walks through the role
that log management plays in digital transformation
initiatives. By focusing on the steps organizations
typically go through along their digital transformation
journeys – which often start with a move toward
microservices, followed by adoption of other DevOps

LOG MANAGEMENT AND DIGITAL
TRANSFORMATION

practices – the following chapters explain which
special challenges developers and operations teams
face as they modernize their IT environments, how log
management addresses these challenges and where
log management fits within the DevOps journey.

5ME ZMO EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

In his Introduction to the Modeling and Analysis of
Complex Systems, Professor Hirorki Sayama defines
complex systems as “networks made of a number of
components that interact with each other, typically
in a nonlinear fashion.” If we acknowledge that a
microservices architecture can be viewed as a network
of semi-independent systems that communicate with
each other, we can say that it is a complex system
rather than a monolith. But what is the reason for this?

The first reason is the environment: microservices
architectures respond to the requirements of
interconnected systems, which are much more
common than isolated systems these days. Meanwhile,
monolithic architectures respond to simpler business
requirements. Monoliths are useful for ideation, proof
of concepts, and focused work like user stories and
one-off projects. While complex applications can be
built with a monolithic architecture, as the business

Let’s start by discussing what log management means
when you begin to modernize your IT estate by moving
from monoliths to microservices-based applications.

The microservices-oriented architectural style is
the culmination of longstanding efforts to promote
a heterogeneous yet orchestrated way of modeling
complex software systems. As business use cases
become more advanced, this style has grown in
adoption. Logging microservices is a powerful way
for developers to extract valuable information from
the massive amount of data that modern applications
process and produce.

Modern Systems = Complex
Systems

THE POWER OF
MICROSERVICES LOGGING

http://bingweb.binghamton.edu/~sayama/textbook/

6LOGD N A EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

“If we acknowledge that a microservices architecture can be viewed as a
network of semi-independent systems that communicate with each
other, we can say that it is a complex system rather than a monolith.”

case expands it ’s often better to be prepared with a
distributed architecture.

Other benefits of using a distributed architecture are
that critical components can be isolated and fault
tolerance pathways can be defined, teams can be laser
focused on delivering business value, and the entire
system can more fluidly scale to meet the needs of a
dynamic customer base.

Designing a distributed system is not as simple as
creating a federation of monoliths. Microservices
architectures create new challenges in areas that were
not as difficult to design for a single system (such as
consistency, communication, persistence, security,
and deployment). In addition, microservices instances
are usually considered disposable in order to allow
scale-in and scale-out depending on the system load.
Under the traditional logging scheme, this leads to
numerous, ephemeral log files that must be accessed
one at a time. Centralizing your logs into one single
source of truth is essential to understand how these

connected systems interact and diagnose errors with
the context you need.

The Power of Logs
In his book, I Heart Logs, Jay Kreps presents the
concept of logs as a data structure that solves
problems like consensus in order to determine what
happened if there was an issue in a distributed system.
This means that logging can be used as a tool for data
integration by making all of a system’s data available
even if it comes from heterogeneous sources. Logging
is also a useful way to collect data that is produced in
real time, such as data that is gathered by sensors that
are connected to the internet and deployed in hundreds
or thousands of instances at the same time.

By leaning on this view of logs as power tools for
processing and storing data, developers move
towards what Kreps calls “log-centric architectures.”
In this type of architecture, small and specialized
microservices can run in large numbers simultaneously

7ME ZMO EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

in order to focus on their internal logic and delegate
tasks such as consistency, data flow, and recovery.
With so many systems interacting at once, centralized
log management is the only way to easily find and make
sense of the information that you need.

Microservices also provide data about their own
operational status, meaning that a centralized logging
platform can help developers find and address other
operational problems using the power of logging.
According to the principles of chaos engineering,
organizations need to ask themselves how much
confidence they can have in the complex systems
they put into production. This will depend entirely on
their techniques for gathering data and their ability to
understand and take action on it.

The heterogeneous nature of microservices
contributes to the chaos that can result from this
type of architecture. Microservices are usually not
implemented by the same team, so there can be
several different ways to log data. Even if that’s not
the case, business requirements are different for
each microservice, so logs may not represent data in
a consistent way. All of this means that the platform
used to centralize the logging for microservices must
be flexible enough to transform and aggregate the data
in order to provide useful information, no matter if the
format is standard or custom.

Centralizing log data is not a simple task, given that
microservices architectures must comply with
higher levels of scalability, traceability, flexibility,
and security. A carefully-chosen platform that will
connect the logs from your microservices will allow you
to harness the power of the information that you can
derive from this kind of architecture.

https://principlesofchaos.org/

8ME ZMO EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

adversarial relationships between the teams.

Most modern development teams have adopted the
DevOps approach for developing and releasing
software into a production environment. The objective
of DevOps is to help development, operations, and
security teams work more harmoniously and, in some
cases, even centralize their work into a single team.
When practiced effectively, this has the effect of
shortening the release cycle and improving quality.
Often, a single team is responsible for managing the
entire lifecycle of a product, increasing a sense of
ownership and reducing friction. DevOps can be
incredibly effective, but it requires a paradigm shift in
the way teams work; and teams need access to new and
more efficient tools.

Here’s an example of a DevOps release cycle:

Making the shift to microservices is only one of the key
steps toward Digital Transformation. Equally important
is embracing CI/CD to enable a high rate of release
velocity – which is one of the pillars of DevOps.

The DevOps Release Cycle
In the past, the traditional software development life
cycle would begin with the development team working
on a solution in its entirety. Once development was
complete, they would pass it on to the quality
assurance (QA) team for testing. Assuming the product
got approval from QA, it would then be passed to an
operations team to deploy and manage the solution in
the production environment. While this process
worked, it wasn’t efficient and would often result in

IMPROVING YOUR RELEASE CYCLE
WITH LOG MANAGEMENT

1

2

3

4

5

6

9LOGD N A EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

A small unit of work is selected, and the team
designs and builds a solution.

The solution includes additions to the test
suite, such as unit tests, integration tests and
performance tests.

The code is reviewed and merged into the
main code base.

The code merge triggers a continuous
integration (CI) pipeline, which executes all
tests within the test suite, and may also run
static analysis and security scans against the
updated code base.

If successful, a continuous delivery or
deployment (CD) pipeline builds and packages
the code, and deploys it into either a test or a
production environment.

The team monitors the new deployment to
determine its effectiveness and stability, and
takes any additional action to ensure that it
works as expected.

Steps 4, 5 and 6 are often combined into a single utility,
known as a CI/CD pipeline, and the effectiveness of this
pipeline has a massive bearing on the team’s
effectiveness and success.

The Power of Automation
We use automation with software development to
streamline processes and ensure that repeatable steps
are always performed, without relying on human input
or intervention. An effective CI/CD pipeline leverages
the power of automation to take changes to the code
base, and move them through a carefully designed
series of tests and validations until they are either
rejected or deployed into an environment.

The automated processes within the pipeline rely on
feedback to validate their results. Feedback during the
testing process comes from the results of each of the
tests. Once the product is deployed, the pipeline needs
access to information that validates the performance
of the application or service itself. An effective log
management solution is critical at this point.

10LOGD N A EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

“Modern log management systems like Mezmo aggregate, index, and
analyze logs automatically to provide these insights and expose them
programmatically to utilities like a CI/CD pipeline.”

Using Logs to Drive Automation
Traditionally, software engineers have used logs to
troubleshoot applications and gain insights into the
performance of the services they support. Modern log
management systems like Mezmo aggregate, index, and
analyze logs automatically to provide these insights
and expose them programmatically to utilities like a CI/
CD pipeline.

The CI/CD pipeline can use data from the log
management system in a couple of ways. One way is as
a validation source for a canary deployment within a
microservice architecture. The team might deploy a
specific service in a high-availability configuration in a
microservices architecture consisting of several
containers or instances running behind a load balancer.

Let’s consider an example of a cluster of five instances
running a particular service. Instead of replacing all the

instances at once, the pipeline deploys a single
instance. Once successful, it configures the load
balancer to route 5% of the traffic to the new
instance. The log management system collects the
logs from the new instance. The pipeline can query
the system to get the new instance’s logs and
determine error rates, success rates, and metrics
such as latency and processing times.

The pipeline compares these results to those from
the instances running the previous version of the
software. Suppose the results fall within an
acceptable range or show an improvement. In that
case, the release is determined to be successful, and
the remaining instances are updated or replaced
with new instances executing the new code. If the
results show an increase in errors or performance
degradation, the pipeline fails the deployment and
removes the canary instance.

11LOGD N A EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

Although the journey toward DevOps often begins with
microservices and CI/CD, it doesn’t stop there. As this
chapter explains, a variety of other DevOps tools and
practices must come into play to enable complete
digital transformation.

Why Digital Transformations
Succeed and Fail
Successful digital transformations take dedication,
hard work, and discipline. The organization needs to
commit to the process and believe in future success.
The most effective transformations start with a
clear vision and commitment from the executive
leadership team, who select transformation leaders
and empower them to enact change, introduce new
practices, and adapt as needed. The strategy can
involve selecting high-performers in each area to
investigate and implement new processes and then

WHY DEVOPS TOOLS ARE ESSENTIAL
FOR DIGITAL TRANSFORMATION

disseminate them and change their teams’ culture.
Over time, these processes evolve alongside a culture
of experimentation, agility, and adoption of continual
improvement.

Digital transformations generally fail due to a lack of
commitment and a lack of flexibility in implementing
the changes. An organization might make the changes
in some parts of their organization and not in others.
Or, they might attempt to change processes without
addressing the corporate culture, and failing to change
the collective mindset of those who support the day-to-
day operations.

A digital transformation involves a lot of risk and a lot of
coordinated changes. It requires flexibility and agility.
One path that many organizations have used to succeed
in their endeavors is using the Agile software movement
and DevOps principles.

1

2

3

4

12ME ZMO EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

Using DevOps to Drive Digital
Transformation
DevOps is a new way of thinking about developing
and supporting software. DevOps breaks down the
traditional silos of development, quality assurance
and operations, and forms new teams. These teams
then own applications and services – from the design
process to deployment, monitoring, and support.
DevOps teams often operate within an agile framework,
whereby small units of work are identified and
developed within short timeframes. This approach
allows teams to deploy new changes rapidly and easily
pivot to new business requirements as needed.

Because of the unique combination of skills required
to practice DevOps , these engineering teams must
have a reliable set of tools and utilities to support their
efforts. This support infrastructure utilizes automation
and various data sources to test and validate software
through the development process. It continues as the
applications are deployed and used by consumers,
within the organization and externally.

Ensuring DevOps Success with the
Right Toolset
At the core of a successful DevOps practice are tools
that gather and analyze data programmatically. The
DevOps process produces data in many forms. Data
sources can include, but aren’t limited to:

The results of automated testing; unit tests,
integration tests, performance tests, and
others.

Static code analysis, security and
vulnerability scans, and code quality
assessments.

Application and system logging.

Application Performance Metrics (APM).

The testing and code analysis results are essential
during the build, package, and deployment phases
of an application or service. After deployment, the
application and system logs and the performance
metrics are critical for a concept known as
observability. Observability is the external analysis
of metrics from a system that provides insights into
the health and the performance of that system.
Log aggregation and management is an invaluable
component that makes up one pillar of observability,
alongside tracing and metrics. Especially in distributed
systems, managing logs from a central control plane is
critical.

Teams should be able to adopt and use these tools with
ease. Adopting a self-service model, whereby teams
have access to on-demand training and documentation,
can easily integrate the tools into the DevOps process.
The guiding principle is to provide tools and reduce any
friction related to DevOps teams’ use.

Learning from DevOps Tools
The DevOps tools’ features that make them effective
can be applied to your organization as well. Just
as the tools use data as a basis for their decisions,
your teams use data to inform their decisions. Data-
based decision-making is a crucial part of any digital
transformation.

DevOps tools also reduce friction by automating
repeatable processes to make them consistent and
more efficient. The end goal of a digital transformation
is to automate repeatable tasks and improve their
efficiency and speed. Automating processes frees your
most valuable asset – your people – and allows them to
focus on exploring creative and unique ways of solving
problems and continuing to revolutionize your business
practices.

13LOGD N A EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

In previous chapters, we explored the importance of
logging to monitor distributed applications or
systems built using a microservices architecture.
We’ve also discussed how a comprehensive log
management solution is invaluable in continually
improving your release cycle. And, we looked at the
importance of DevOps toolsets in accomplishing a
digital transformation within your organization.

This chapter will take a closer look at how a log
management system can provide insights into the
impact that code changes have at each stage in
the development lifecycle, including within your
continuous integration / continuous deployment
(CI/CD) pipeline. We’ll discuss the different effects that
code changes have and how to observe, identify, and
mitigate those effects.

UNDERSTANDING THE IMPACT CODE
CHANGES HAVE ON YOUR PIPELINE

The DevOps Lifecycle
The DevOps lifecycle is a cycle of identifying a need,
designing and implementing a solution, and then
deploying it through an automated pipeline into a
production environment. Once deployed, various
systems monitor the code. Using this information, the
team can identify additional features or modifications
and repeat the process. Within the lifecycle, a core
philosophy at play is that of feedback loops. At each
step, the team uses procedures to validate the code and
determine if it can proceed. If validation fails, the team
rectifies the problem and resubmits the modified code.
Rapid and frequent feedback gives the engineers time
to react, prioritize, and address issues before they can
significantly impact the process.

Let’s walk through each step within the lifecycle and
identify how code changes impact the process and how
teams can use tools and automation to ensure problems

14ME ZMO EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

are identified and mitigated. When this lifecycle is
automated and proven by the team, it establishes a
sense of trust with the team. The certainty that the
process works increases a team’s confidence in their
code, accelerating the development process.

Planning and Coding

The planning and coding phase of the lifecycle is the
most difficult to automate. This phase is essential to
establish a firm foundation for the remainder of the
process. It includes the process of identifying and
refining the requirements and building the solution.
Building the solution involves coding and adding tests
to a test suite that validates the new or modified
functionality. Engineers typically execute these tests
locally. It is typical for teams to have a process run the
test suite and other analytics tools when introducing
changes to the code repository.

Techniques like API-first development and test-driven
development help ensure that the logic within the new
or modified code is sound and meets the requirements
established during the planning phase. In addition
to executing the test suite,utilities like static code
analysis, mutation testing, and vulnerability scanning
complement any checks that are part of a compiler or
preprocessor.

Finally, in this part of the process, the engineers
instrument their code to support observability and
monitoring later in the lifecycle. This instrumentation
takes the form of adding log statements and
implementing libraries and frameworks that support
distributed tracing and performance metric reporting.

OPERATE

MONITOR

DEPLOY

PLAN

BU
IL

D
CODE

TEST
RELEASE

15LOGD N A EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

Build and Test

The build and test actions are the initial steps that
the pipeline performs on newly submitted code
changes. Ideally, the actions performed should mirror
those already performed manually by the engineer.
Performing them validates that the compilation, test
suites, and packaging of the application or service are
completed as expected.

The pipeline relies on the build and test processes’
results to validate this part of the lifecycle. If failures
occur, the pipeline utility typically sends an alert to the
engineering team, and they research and rectify the
problem before submitting the change again.

Release and Deploy

Having validated that the code passed all tests, and
packaging the code into a new deployment unit, the
pipeline proceeds to the release and deploy phases.
This pipeline stage is when the instrumentation and
logging are of the utmost importance. The pipeline
deploys the new code to validate the new release’s
performance without a significant impact on users of
the system. Some examples of different approaches
that teams use are canary deployment, blue/green
deployment, or red/black deployments.

The pipeline relies on data from the newly deployed
code to validate that the deployment was successful
and that consumer interactions execute as expected.
System and application logs are the core atomic unit
for gathering the necessary information to make these
decisions. A log management system such as Mezmo
is essential to perform this task. The log management
system aggregates, analyzes, and then provides data
to the pipeline to make appropriate decisions based on
the results.

If the pipeline determines that the deployment is
successful, it orchestrates the complete replacement
of previous versions of the application or service
and annotates the pipeline as having completed
successfully.

Monitor and Operate

Once the pipeline deploys the application, we enter the
final phase of the DevOps lifecycle. As with the previous
stage, system and application logs and performance
metrics are central to this phase. In the past,
operations personnel would routinely review logs and
manually check each server’s performance metrics as
part of their role. In the DevOps age, and with modern
distributed architectures, this is no longer feasible or
necessary.

Log management systems do more than collect
and aggregate logs. Systems like Mezmo perform
complex analytics on the logs to help engineers detect
anomalies and identify potential problems. DevOps
teams can establish baseline metrics for performance,
error rates, and latency. Modern log management
systems can consider these baseline metrics and alert
users when they act outside of the expected behavior.

Automating these processes is more efficient. In many
cases, even the incident response can be automated,
resulting in fewer interruptions for the engineering
team.

1

2

3

4

5

6

16LOGD N A EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

SAML allows them to leverage existing identities and
roles within your organization to control access to your
data that’s stored in their systems.

The basic process is quick and fairly seamless:

A client connects to the service provider.

The service provider redirects to the client
organization’s identity provider with a basic
SAML token (such as an Active Directory).

The identity provider recognizes the SAML
token and asks the client for their login
credentials.

After a successful login, the identity provider
redirects the client back to the service
provider with 	a fully populated SAML token,
which can include client information and
authorized roles.

The service provider receives the SAML
token and processes its data; then, it grants
the client access according to the roles that
it has been assigned.

The client uses the service provider.

By leveraging SAML and taking advantage of its single
sign-on and federation features, your organization’s
identity provider can have full control over both the
accounts and the roles that are used by any solution
providers. This use allows existing processes to handle
account management, and any centralized logging
that you have in place will gain immediate visibility into
logins and access requests on those external systems.
Many third-party services also allow events and other
activities to be exported as logs, either in real-time
or as a scheduled activity. These logs can then be
incorporated securely into your centralized logging to
improve visibility into all ongoing activities across your
organization.

17ME ZMO EBOOK: LOG M A N AGEMEN T IN T H E AGE OF D IGI TA L T R A NSF ORM AT ION

In short, although log management may seem to
be a rather mundane process, it plays a vital role
in any digital transformation initiative. By allowing
organizations to retain visibility into their applications
as they embrace complex, microservices-based
architectures, log management serves as the linchpin
of a successful shift to digital.

Businesses can’t thrive today if they lack the visibility
and actionability that log management brings to
their software-delivery and management processes.
They need a tool like Mezmo, which offers real-time
aggregation, monitoring, and analysis, as well as
real-time alerting to tools like PagerDuty and Slack, to
complement digital transformation initiatives.

To learn more about how Mezmo’s developer-friendly
log management platform can empower your team
with the insights it needs to complete a successful
digital transformation, request a free, full-featured
product trial.

About Mezmo
Mezmo is a centralized log management solution that
helps modern engineering teams be more productive
in a DevOps-oriented world. It enables frictionless
consumption and actionability of log data so
developers can monitor, debug, and troubleshoot their
systems with ease.

CONCLUSION

https://www.mezmo.com/sign-up

Thank You
PR & marketing inquiries:

Sales inquiries:

Technical inquiries:

Customer service:

marketing@mezmo.com

sales@mezmo.com

tech@mezmo.com

outreach@mezmo.com

mailto:marketing@mezmo.com
mailto:Sales@mezmo.com
mailto:tech@mezmo.com
mailto:outreach@mezmo.com
www.mezmo.com

